
I help companies and teams that create software.

allan's blog - Agile &
Digital Business

Friday, October 30, 2015

Software has diseconomies of scale - not economies of scale
“Practical men, who believe themselves to be quite exempt from any intellectual influence, are
usually the slaves of some defunct economist.” John Maynard Keynes

Most of you are not only familiar with the idea of economies of scale but you expect economies of scale.
Much of our market economy operates on the assumption that when you buy/spend more you get more per
unit of spending.

At some stage in our education - even if you never studied economies or operational research - you have
assimilated the idea that if Henry Ford builds 1,000,000 identical, black, cars and sells 1 million cars, than
each car will cost less than if Henry Ford manufactures one car, sells one car, builds another very similar
car, sells that car and thus continues. The net result is that Henry Ford produces cars more cheaply and
sells more cars more cheaply so buyers benefit.

(Indeed the idea and history of mass production and economies of scale are intertwined. Today I’m not
discussing mass production, I’m talking Economies of Scale.)

You expect that if you go to your local supermarket to buy milk then buying one, large - carton of milk - say
4 pints in one go, will be cheaper than buying 4 cartons of milk each holding one pint of milk.

In my #NoProjects talk I use this slide, it always gets a laugh:

Yesterday I put this theory to a test in my local Sainsbury’s, here is the proof:

Allan Kelly

allankelly2015

Contributors

Continuous Digital: the alternative to
projects

Xanpan

Little Book of User Stories

Business Patterns

Changing Software Development

Agile Reader

My books

Sign-up for my newsletter

Newletter sign-up

Upcoming events with Allan
Kelly
Private: 15 September at Oxford

Agile Cambridge
Software Acumen: 27-29
September at Cambridge

Agile Bristol
Agile Bristol: 12 September
Evening at TBA

Agile Dice Game
TechCityCoffee: 25 July 2017
2pm-4.30pm at Near Old Street
Roundabout

Evolving Project Management
widget @ surfing-waves.com

I am at...

Upcoming events

Events RSS feed

Speaking events

OnTwitter: @allankelly.net

My Homepages: allankelly.net

More

Twitter feed

More Next Blog» allankellynet@gmail.com New Post Design Sign Out
This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information
about your use of this site is shared with Google. By using this site, you agree to its use of cookies. LEARN MORE GOT IT

allan's blog - Agile & Digital Business: Software has diseconomies... http://allankelly.blogspot.co.uk/2015/10/software-has-diseconomie...

1 of 5 8/3/17, 1:46 PM

1 pint of milk costs 49p (marginal cost of one more pint 49p)
2 pints of milk cost 85p, or 42.5p per pint (marginal cost of one more pint 36p)
4 pints of milk cost £1, or 25p per pint (marginal cost of one more pint 7.5p)

(And if you don’t know, the UK is a proudly bi-measurement country. Countries like Canada, The
Netherlands and Switzerland teach their people to speak two languages. In the UK we teach our people to
use two systems of measurement!)

So ingrained is this idea that when it supermarkets don’t charge less for buying more, complaints are made
(see The Guardian from a few months back.)

Buying milk from Sainsbury’s isn’t just about the milk: Sainsbury’s needs the store there, the store needs
staffing, it needs products to sell, and they need to get me into the store. That costs the same for one pint
as for four. Thats why the marginal costs fall.

Economies of scale are often cited as the reason for corporate mergers: to extract concessions from
suppliers, to manufacture more items for lower overall costs. Purchasing departments expect economies of
scale.

But…. and this is a big BUT…. get ready….

Software development does not have economies of scale.

In all sorts of ways software development has diseconomies of scale.

If software was sold by the pint then a four pint carton of software would not just cost four times the price of
a one pint carton it would cost far far more.

The diseconomies are all around us:

Small teams frequently outperform large team, five people working as a tight team will be far
more productive per person than a team of 50, or even 15. (The Quattro Pro development team
in the early 1990s is probably the best documented example of this.)
The more lines of code a piece of software has the more difficult it is to add an enhancement or
fix a bug. Putting a fix into a system with 1 million lines can easily be more than 10 times harder
than fixing a system with 100,000 lines.
Projects which set out to be BIG have far higher costs and lower productivity (per unit of
deliverable) than small systems. (Capers Jones' 2008 book contains some tables of productivity
per function point which illustrate this. It is worth noting that the biggest systems are usually
military and they have an atrocious productivity rate - an F35 or A400 anyone?)
Waiting longer - and probably writing more code - before you ask for feedback or user validation
causes more problems than asking for it sooner when the product is smaller.

The examples could go on.

But the other thing is: working in the large increases risk.

Suppose 100ml of milk is off. If the 100ml is in one small carton then you have lost 1 pint of milk. If the
100ml is in a 4 pint carton you have lost 4 pints.

Suppose your developers write one bug a year which will slip through test and crash the users' machine.
Suppose you know this, so in an effort to catch the bug you do more testing. In order to keep costs low on
testing you need to test more software, so you do a bigger release with more changes - economies of scale
thinking. That actually makes the testing harder but… Suppose you do one release a year. That release
blue screens the machine. The user now sees every release you do crashes his machine. 100% of your
releases screw up.

If instead you release weekly, one release a year still crashes the machine but the user sees 51 releases a
year which don’t. Less than 2% of your releases screw up.

Yes I’m talking about batch size. Software development works best in small batch sizes. (Don Reinertsen
has some figures on batch size The Principles of Product Development Flow which also support the
diseconomies of scale argument.)

Ok, there are a few places where software development does exhibit economies of scale but on most
occasions diseconomies of scale are the norm.

This happens because each time you add to software software work the marginal cost per unit increases:

Add a fourth team member to a team of three and the communication paths increase from 3 to 6.
Add one feature to a release and you have one feature to test, add two features and you have 3
tests to run: two features to test plus the interaction between the two.

In part this is because human minds can only hold so much complexity. As the complexity increases (more
changes, more code) our cognitive load increases, we slow down, we make mistakes, we take longer.

(Economies of scope and specialisation are also closely related to economies of scale and again on the
whole, software development has diseconomies of scope (be more specific) and diseconomies of
specialisation (generalists are usually preferable to specialists).)

However be careful: once the software is developed then economies of scale are rampant. The world
switches. Software which has been built probably exhibits more economies of scale than any other product
known to man. (In economic terms the marginal cost of producing the first instance are extremely high but
the marginal costs of producing an identical copy (production) is so close to zero as to be zero, Ctrl-C Ctrl-
V.)

Embed View on Twitter

Tweets by @allankellynet

19h

 allan kelly Retweeted

Pro tip: if your method is 225 lines long,
then you should probably refactor your
code ASAP. I frown at methods over 50
lines.

 allan kelly Retweeted

Get the new book from Allan Kelly
(@allankellynet) for just $5 on LeanPub for

Anna Filina
@afilina

Multinewmedia
@Multinewmedia

Follow by Email

Email address... Submit

Subscribe To

 Posts

 Comments

Followers (39) Next

Follow

Followers

Alltop

Software has diseconomies
of scale - not economies of
scale

Some things can never be spoken

Programmers without TDD will be
unemployable by 2022 (a prediction)

Why do devs hate Agile?

Dear boy, have you ever tried
programming?

Banking systems stink - the pain of an
botched HSBC release

Popular Posts

► 2017 (27)

► 2016 (43)

▼ 2015 (42)

► December (3)

► November (3)

▼ October (3)

Software has diseconomies of scale - not
economies...

Blog Archive

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information
about your use of this site is shared with Google. By using this site, you agree to its use of cookies. LEARN MORE GOT IT

allan's blog - Agile & Digital Business: Software has diseconomies... http://allankelly.blogspot.co.uk/2015/10/software-has-diseconomie...

2 of 5 8/3/17, 1:46 PM

Posted by Allan Kelly at 9:31 am

Firstly you need to rewire your brain, almost everyone in the advanced world has been brought up with
economies of scale since school. You need to start thinking diseconomies of scale.

Second, whenever faced with a problem where you feel the urge to go bigger run in the opposite direction,
go smaller.

Third, take each and every opportunity to go small.

Four, get good at working in the small, optimise your processes, tools, approaches to do lots of small things
rather than a few big things.

Fifth, and this is the killer: know that most people don’t get this at all. In fact it's worse…

In any existing organization, particularly a large corporation, the majority of people who make decisions are
out and out economies of scale people. They expect that going big is cheaper than going small and they
force this view on others - especially software technology people. (Hence Large companies trying to be
Agile remind me of middle aged men buying sports cars.)

Many of these people got to where they are today because of economies of scale, many of these
companies exist because of economies of scale; if they are good at economies of scale they are good at
doing what they do.

But in the world of software development this mindset is a recipe for failure and under performance. The
conflict between economies of scale thinking and diseconomies of scale working will create tension and
conflict.

Have I convinced you?

Get small.

Finally, I increasingly wonder where else diseconomies of scale rule? They can’t be unique to software
development. In my more fanciful moments I wonder if diseconomies of scale are the norm in all knowledge
work.

Even if they aren’t, as more and more work comes to resemble software development - because of the
central role of individual knowledge and the use of software tools - then I would expect to see more and
more example of diseconomies of scale.

(PS, if you didn’t see my last post I’ve started a newsletter list, please subscribe.)

►

► August (4)

► July (2)

► June (5)

► May (1)

► April (4)

► March (5)

► February (4)

► January (3)

► 2014 (41)

► 2013 (43)

► 2012 (45)

► 2011 (53)

► 2010 (70)

► 2009 (90)

► 2008 (85)

► 2007 (79)

► 2006 (77)

► 2005 (62)

Syndicated to Java Code Geeks

JavaCodeGeeks

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information
about your use of this site is shared with Google. By using this site, you agree to its use of cookies. LEARN MORE GOT IT

allan's blog - Agile & Digital Business: Software has diseconomies... http://allankelly.blogspot.co.uk/2015/10/software-has-diseconomie...

3 of 5 8/3/17, 1:46 PM

Top comments

julien tayon 1 year ago - Shared publicly

bigger efforts need coordination.
Coordination introduces politics in software. Politic has unstable point of views based
on power struggle. Computer deals poorly with non determined values.

Computer does or not. It does not "maybe/might" yet. The uncertainty in the specs
goes in the code... Our code is a leaky abstraction of our organization.
+5

6
 ·

Reply

Your words are so true, nicely said.
Marcos Brigante 1 year ago (edited)

Piotr Kalinowski via Google+ 1 year ago - Shared publicly

I haven't thought about it that way.

+3
4

 ·

Reply

Mario Lucero via Google+ 1 year ago - Shared publicly

Great article!!!

+1
2

 ·

Reply

Luke Micono 9 months ago - EMP5031-Fall2016 (Discussion)

I believe there are a few of us in both EMEN 5010 and EMEN 5031 in this class, so I
thought I'd share the below, as it addresses lean development as well as economies of
scale (which was recently addressed in 5010).

I'm curious to hear what others in the class think. Do the principles of economies of
scale really apply in the realm of software development?

That's an interesting perspective. But I can also see software as the perfect
economy of scale. Because essentially, you build one version of software using
one process cycle (or maybe a few if you consider different operating systems or
different architectures) and then you can instantly deploy it on an in\nite number
of computers and devices. So it is one of the most e]cient production processes.

Nazly El Shazly 9 months ago

I think the author is confusing scaling software with making a product more
complex. Adding more lines of code or more features to a project isn’t scaling it –
it’s making it more complicated. It would be like if Henry Ford decided to add four
wheel drive, an autopilot, and a coffee maker to his cars. In that case, of course
they would end up being more expensive.

Jim Lampariello 9 months ago

Overture Project 1 year ago - Shared publicly

"In part this is because human minds can only hold so much complexity. As the
complexity increases (more changes, more code) our cognitive load increases, we
slow down, we make mistakes, we take longer." http://buff.ly/29qmOrv

 ·

Reply

BLUE SCRUM 1 year ago - Shared publicly

Small is beautiful in software development #bluescrum #team

 ·

Reply

What's Blue Scrum...? Small does not equal Scrum.
Dexter Miguel 1 year ago

Mike Pearce via Google+ 1 year ago - Shared publicly

This is brilliant. A really useful way of explaining why smaller iterations and fewer
deliverables as actually healthy and stand more chance of success. Economies of
scale is something most stakeholders will understand.

 ·

Reply

Sam Steingold 1 year ago - Shared publicly

Add a comment as Allan Kelly

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information
about your use of this site is shared with Google. By using this site, you agree to its use of cookies. LEARN MORE GOT IT

allan's blog - Agile & Digital Business: Software has diseconomies... http://allankelly.blogspot.co.uk/2015/10/software-has-diseconomie...

4 of 5 8/3/17, 1:46 PM

(c) Content Allan Kelly. Simple theme. Powered by Blogger.

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information
about your use of this site is shared with Google. By using this site, you agree to its use of cookies. LEARN MORE GOT IT

allan's blog - Agile & Digital Business: Software has diseconomies... http://allankelly.blogspot.co.uk/2015/10/software-has-diseconomie...

5 of 5 8/3/17, 1:46 PM

